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Abstract

The present work deals with an analytical solution based on the parallel flow assumption obtained in the case of a vertical porous layer heated
and salted from the long vertical sides with uniform fluxes of heat and mass, respectively. The study concerns a specific case for which the
buoyancy ratio and the separation coefficient are identical. For this particular situation, the external mass flux is compensated by the Soret effect,
which leads to zero concentration gradient on the vertical walls. The problem is first analyzed by solving numerically the full governing equations
and the aspect ratio required to satisfy numerically the parallel flow conditions is determined. Analytical solutions for the pseudo-conductive and
boundary layer regimes are proposed and discussed. The N–Le plane is divided into regions with specific behaviors and the results obtained are
presented in terms of boundary layer thickness, heat transfer (Nusselt number), and mass transfer (Sherwood number) versus the main governing
parameters.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The study of the interaction between thermodiffusion and
thermosolutal natural convection in fluid and porous media is
of great importance owing to the presence of the phenomenon
in several natural, environmental and industrial processes. The
Soret effect could be large enough to affect considerably the
flow, heat, and mass transfer characteristics in some mixtures
like polymers, sodium chloride in compact clays and ferroflu-
ids. In addition, the thermodiffusion phenomenon may engen-
der specific behaviors in convective motions (multiplicity of
solutions, super and subcritical flows, hysteresis loops, Hopf’s
bifurcations and reversal gradients of concentration).

Many experimental efforts have been devoted in the past to
the measurement of the Soret coefficient. For binary mixtures,
this coefficient is measured as the ratio of the thermo-diffusion
coefficient to the molecular diffusion and the accuracy of the
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measurements is influenced by convection. A useful review of
different techniques used to measure the Soret coefficient, was
reported in a recent paper by Platten [1]. The author concluded
that each method, among those existing, has its own limitation
and there is no universal technique that works for measuring
the Soret coefficient of any binary mixture. Bifurcations phe-
nomena in a horizontal porous layer of normal-fluid 3He–4He
mixture heated from below were studied experimentally by Re-
hberg and Ahlers [2]. Their study showed that the nature of
bifurcation from the rest state depends on the separation ratio.
Thermo-diffusion in a solution of sodium chloride contained in
compact clay was studied experimentally by Rosanne et al. [3].
They concluded that thermal diffusion enhances the mass trans-
fer. A comparative study of the Soret coefficient measured in a
free fluid and a porous medium was conducted by Platten and
Costesèque [4]. The authors reported that the coefficients mea-
sured in both media do not differ significantly.

Different aspects relative to the coupling between thermod-
iffusion and natural convection were investigated theoretically
in previous studies. The critical conditions corresponding to the
onset of convection were determined by several authors for both
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Nomenclature

A aspect ratio of the porous matrix, H ′/L′
D mass diffusivity of species
DT thermo-diffusion coefficient
g gravitational acceleration
H ′ height of the enclosure
j ′ constant mass flux per unit area
K permeability of the porous medium
L′ width of the porous layer
Le Lewis number, α/D

SP Soret parameter, S′
0DT �T ′/(D�S′)

N buoyancy ratio, βS�S′/βT �T ′
Nu Nusselt number
q ′ constant heat flux per unit area
RT thermal Darcy-Rayleigh number, gβT Kq ′L′2/

(λαν)

S dimensionless solute concentration, (S′ − S′
0)/�S′

S′
0 reference solute concentration

Sh Sherwood number
�S′ characteristic solute concentration, j ′L′/D
t dimensionless time, t ′α/(L′2σ)

T dimensionless temperature, (T ′ − T ′
0)/�T ′

T ′
0 reference temperature

�T ′ characteristic temperature, q ′L′/λ
(u, ν) dimensionless velocities in (x, y) directions,

(u′L′/α, ν′L′/α)

(x, y) dimensionless coordinates, (x′/L′, y′/L′)
Greek symbols

α thermal diffusivity
βS solute concentration expansion coefficient
βT thermal expansion coefficient
ε normalized porosity, ε′/σ
ε′ porosity of the porous medium
λ thermal conductivity
ν kinematic viscosity of the fluid
(ρc)f heat capacity of the fluid mixture
(ρc)p heat capacity of the saturated porous medium
σ heat capacity ratio, (ρc)p/(ρc)f
ψ dimensionless stream function, ψ ′/α
ζ dimensionless vorticity, ζ ′L′2/α
η relaxation factor, (CaKα)/(σL′ν)

Superscript
′ for dimensional variable

Subscripts

0 refers to a reference state
S refers to solutal
T refers to thermal
horizontal [5–10] and vertical [11] rectangular enclosures. The
importance of such category of problems, for which the sta-
bility analysis is possible, remains in their attractive aspects
characterized by the richness of the behaviors susceptible to
be encountered (critical conditions of the onset of stationary
and/or oscillatory convective motions and many other behav-
iors). Hence, Bourich et al. [5] considered the case of a horizon-
tal porous enclosure, obeying the Brinkman–extended Darcy
model and heated uniformly from below with a constant heat
flux. The Soret effect on thermal natural convection was stud-
ied analytically and numerically and thresholds for the onset of
stationary and finite amplitude convection are determined ex-
plicitly as function of the governing parameters. The threshold
for the Hopf’s bifurcation is obtained on the basis of the linear
stability analysis. Thermal convection in binary liquid mixtures
was considered by Ryskin et al. [6] in the limit where the solutal
diffusivity is weak but the separation ratio is large. Convec-
tive motion is found to set in at Rayleigh numbers well below
the critical threshold for single-component liquids. Sovran et
al. [7] studied the onset of convection in an infinite porous layer
saturated by a binary fluid with impermeable horizontal walls
maintained at different and uniform temperatures. Using a lin-
ear stability analysis, the criteria for the onset of motion via a
stationary and Hopf’s bifurcation were derived for the cases of
heating from below or from the top. They showed that the bifur-
cation from the rest state depends on, among other things, the
separation ratio. Mahidjiba et al. [8] investigated analytically
and numerically the interaction between the Soret effect and a
shear stress applied on the free upper boundary of a horizontal
fluid layer of a binary mixture. The boundaries of the system
were considered impermeable to mass transfer and subjected
to uniform heat fluxes. The occurrence of multiple steady-state
solutions was demonstrated for given sets of the governing pa-
rameters. The onset of thermosolutal convection in a horizontal
porous layer heated and salted from below and subject to a hori-
zontal heat flux balanced by a Soret mass flux was examined by
Mansour et al. [9]. They demonstrated that subcritical with or
without supercritical bifurcations are possible depending on the
Soret parameter. The lateral heating parameter affects the flow
and the heat transfer considerably, but its effect on the mass
transfer is negligible. Charrier-Mojtabi et al. [10] investigated
the Soret effect under the simultaneous action of vibrational and
gravitational accelerations in a porous cavity saturated by a bi-
nary mixture. The problem was examined for different aspect
ratios and various directions of vibration. They found that, for
both stationary and Hopf’s bifurcations, the vertical vibration
has a stabilizing effect while the horizontal one has a destabi-
lizing effect on the onset of convection motion. The onset of
thermogravitational diffusion in a vertical porous cavity sub-
ject to horizontal thermal gradients in the case of opposing and
equal thermal and solutal buoyancy forces was examined by
Marcoux et al. [11]. The thresholds of instability were com-
puted for various enclosure aspect ratios by mean of a linear
stability analysis. Their numerical results showed different flow
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structures in addition to the existence of time-periodic oscilla-
tory solutions.

Studies involving effects of both horizontal and vertical hy-
drodynamic and thermal heterogeneity on the onset of con-
vection in a horizontal layer of saturated isotropic [12] and
anisotropic [13] porous media, uniformly heated from below,
are studied analytically using linear stability theory for the case
of weak heterogeneity. Thermodiffusion combined with non-
Boussinesq behaviors [14], gravity gradients [15], cross gradi-
ents of temperature and concentration [16,17], boundary layer
behaviors [18] and analysis of the Soret coefficient [19] have
also been the object of interest. Karcher and Müller [14] stud-
ied Bénard convection in a mixture displaying Soret effects
and obeying a nonlinear density-temperature relation. Using
the linear theory, they demonstrated that the non-Boussinesq
properties have a destabilizing effect on the rest state regime.
Combined effects of the gravity gradient and thermal diffusion
on convection in a horizontal porous layer, subject to verti-
cal gradients of temperature and concentration, were studied
by Alex and Patil [15]. They found that the Soret parame-
ter affects the pattern of convection only when its magnitude
is large in the presence and in the absence of gravity gra-
dient. Bennacer et al. [16] studied natural convection com-
bined with Soret effect in a binary fluid saturating a shallow
horizontal porous layer subjected to cross fluxes of heat and
mass. They demonstrated that both natural and anti-natural
flows exist in the presence of a vertical destabilizing concen-
tration gradient. Soret effect on the multiplicity of solutions
induced in a square porous cavity heated from below and sub-
jected to a horizontal gradient of concentration was studied
by Mansour et al. [17]. They observed that only one mono-
cellular flow mode persists at large values of the buoyancy
ratio both in the presence and in the absence of the Soret ef-
fect. Also, the results obtained show that some flow modes,
destroyed by the solutal buoyancy forces in the absence of
the Soret effect, reappear in some range of the Soret parame-
ter. Soret effect on boundary layer flows induced in a vertical
porous layer subjected to horizontal fluxes of heat and mass
was studied by Er-Raki et al. [18]. It was found that differ-
ent boundary layer behaviors are possible depending on the
range of the Soret parameter for given values of the buoy-
ancy ratio and the Lewis number. Jiang et al. [19] made a
numerical study to investigate thermosolutal convection of a
water-ethanol binary mixture, in a three-dimensional horizon-
tal cavity, filled with an aluminium oxide (Al2O3). The thermal
diffusion or Soret effect is analyzed globally with a separation
ratio and locally with the distributions of ethanol mole frac-
tion on the horizontal and vertical lines in the centre of the
porous cavity. The effect of the pressure/(temperature) vari-
ation on the Soret coefficient of ethanol was analysed at a
fixed temperature/(pressure). For both cases, the relative vari-
ation of the Soret coefficient around the mean value was found
noticeable but more pronounced when the temperature was var-
ied [±13.74%/(±26.48%) as relative variation when the pres-
sure/(temperature) was varied].

The object of the present work consists in studying analyti-
cally and numerically the interaction between thermodiffusion
Fig. 1. Sketch of the physical system.

and imposed external fluxes of heat and mass in a vertical
porous cavity. The problem of a vertical porous layer heated
and salted from the long vertical sides with uniform fluxes of
heat and mass was considered in the past by several authors
in the absence of Soret effect (see, for instance, the references
[20–22]). In addition, a configuration with prescribed heat and
mass fluxes allows to tackle analytically the problem and allows
a parametric study (tedious numerically) very helpful for a bet-
ter understanding of the fluid flow and heat and mass transfer
characteristics. In fact, the delimitation of the different regions
with specific behaviors is very difficult numerically and shows
how the numerical treatment of a given problem remains very
insufficient particularly in the case of problems with multiple
solutions. Finally, a heat flux generation or removal could be
obtained in experiment while considering very poor conduc-
tive or thicker boundaries and mass flux could be generated
or removed at batteries wall through endothermic or exother-
mic reactions [23–25]. For the present investigation, attention
is mainly focused on the particular situation where the Soret
parameter, defined as the ratio of the separation coefficient to
the buoyancy ratio, is equal to unity. An appropriate analyti-
cal solution for the pseudo-conductive and the boundary layer
regimes is derived for this particular case.

2. Physical problem and mathematical formulation

The geometry under consideration, sketched in Fig. 1, cor-
responds to an isotropic, homogeneous and saturated verti-
cal porous layer of height H ′ and width L′ such that A =
H ′/L′ � 1. The vertical walls of the layer are submitted to
uniform heat flux, q ′, and mass flux, j ′, while its horizontal
walls are considered adiabatic and impermeable to mass trans-
fer. Using the Darcy model and the Boussinesq approximation
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and assuming constant properties, the dimensionless equations
governing this problem are:

η
∂ζ

∂t
+ ζ = RT

(
∂T

∂x
+ N

∂S

∂x

)
(1)

∂T

∂t
+ u

∂T

∂x
+ ν

∂T

∂y
= ∇2T (2)

ε
∂S

∂t
+ u

∂S

∂x
+ ν

∂S

∂y
= 1

Le

(∇2S + SP ∇2T
)

(3)

∇2ψ = −ζ (4)

u = ∂ψ

∂y
; ν = −∂ψ

∂x
(5)

The associated boundary conditions are:

x = ±1/2, ψ = 0,
∂T

∂x
= 1,

∂S

∂x
= 1 − SP

y = ±A/2, ψ = 0,
∂T

∂y
= 0,

∂S

∂y
= 0

⎫⎪⎪⎬
⎪⎪⎭

(6)

where ζ , ψ , T , S, u and ν are dimensionless vorticity, stream
function, temperature, concentration and horizontal and vertical
components of velocity, respectively.

In addition to the Soret parameter, SP , three other dimen-
sionless parameters appear in the governing equations, namely,
the thermal Rayleigh number RT , the Lewis number Le and the
solutal to thermal buoyancy ratio N , respectively.

Additionally, heat and mass transfers are evaluated in terms
of Nusselt, Nu, and Sherwood, Sh, numbers given, respectively,
by:

Nu =
(

T

(
1

2
,0

)
− T

(
−1

2
,0

))−1

and

Sh =
(

S

(
1

2
,0

)
− S

(
−1

2
,0

))−1

(7)

For a better understanding of the physical phenomena occur-
ring in this problem, an analytical method is adopted. In fact,
the analytical resolution, when it is possible, allows a detailed
parametric study often less evident by the numerical method es-
pecially when multiple solutions and bifurcations are possible
for the considered problem. In addition, the analytical solution
leads directly to mathematical correlations and allows a deeper
discussion implying the main parameters controlling the fluid
flow, heat and mass transfers.

3. Numerical validation of the parallel flow assumption

The main task of the present paper is the derivation of an
analytical solution and its exploitation for a specific case; the
numerical method is adopted here with the sole purpose of val-
idating the analytical results. However, some numerical com-
putations are conducted to define and qualify the geometrical
domain of this study. Basic considerations of the numerical pro-
cedure are described below.

Partial Differential Equations (PDE) set (1)–(3) were dis-
cretized by using a classical central finite-difference scheme
and the iterative procedure was performed by using the Alter-
nate Direction Implicit method (A.D.I.). The stream function
Table 1
Parametric study for the aspect ratio effect, A, for RT = 500, Le = 10, N =
−1.2 and SP = 1

Nature of results ψ0 Nu Sh

Analytical results 3.24 5.71 89.54

Numerical A = 1 3.37 5.07 60.87
results A = 2 3.32 5.68 78.82

A = 4 3.25 5.69 87.59
A = 6 3.25 5.69 89.17
A = 8 3.25 5.69 89.46
A = 12 3.25 5.69 89.51

field was obtained from Eq. (4) using the successive over-
relaxation method (S.O.R).

A global non-uniform grid was used in the x-direction by
dividing the domain into three subdomains. Hence, a fine grid
was used near the vertical walls (�x = 0.005 in the bound-
ary layer regions) while a coarse one (�x = 0.02) was used
outside the boundary layer regions. A similar procedure was
also applied in the vertical direction to refine the grid in the
vicinity of the horizontal walls (�y = 0.015 near these walls
against �y = 0.065 in the remaining space). The computa-
tions were performed with a grid of 81 × 201 and an aspect
ratio varying in the range 8 � A � 12 (the choice of this range
of A is justified in the following subsection). The mesh size
considered was found enough to provide a good compromise
between the required accuracy (validation of the analytical re-
sults) and the computational effort. The steady state regime is
controlled by the satisfaction of the criterion (

∑
i

∑
j |Γ n+1

i,j −
Γ n

i,j |/
∑

i

∑
j |Γ n+1

i,j |) � 10−5, where Γ stays for any of ζ , T ,
S and ψ .

Numerous preliminary numerical tests have been conducted
to identify the minimum value of the aspect ratio required
to recover the analytical results with a reasonable agreement.
The results obtained with the combination (Le,N,RT ,SP ) =
(10,−1.2,500,1) are summarized in Table 1. It can be seen
from this table that the aspect ratio A = 4 is enough to validate
numerically the analytical results for both ψ0 and Nu but not
for Sh. However, from A = 8, the numerical results recover the
analytical ones with a maximum difference within 0.4%.

4. Results and discussion

4.1. The parallel flow solution

The exact analytical solution of the system of Eqs. (1)–(3)
is not possible due to the strong coupling between the equa-
tions and to their non-linear character. However, in the limit of
a shallow enclosure (A � 1), an approximate solution of these
equations becomes possible based on the parallel flow assump-
tion which was successfully used in the past by Cormack et
al. [26] and by many other authors after that for both fluid and
porous media. For the present problem, the parallel flow ap-
proximation is well confirmed numerically in terms of dynamic,
thermal and solutal fields presented in Fig. 2. In fact, it is seen
from this figure that, in the core region of the cavity, the flow is
parallel to the long sides and the temperature and concentration
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Fig. 2. Streamlines (a) isotherms (b) concentration field (c) for RT = 100,Le =
3,N = −3, SP = 1 and A = 8.

fields are characterized by a linear stratification in the vertical
direction.

The PDE set describing the problem under the parallel flow
assumptions and for the particular value (SP = 1) is obtained
as:

d2ψ

dx2
= −RT

d

dx
(θT + NθS) (8)

d2θT

dx2
= −CT

dψ

dx
(9)

d2θS

dx2
= (CT − LeCS)

dψ

dx
(10)

The corresponding boundary conditions on the active walls are:

ψ = 0,
dθT

dx
= 1,

dθS

dx
= 0 for x = ±1/2 (11)

By solving the resulting system (8)–(10), with the boundary
conditions (11), a parallel flow solution is obtained as follows:

ψ(x) = k

[
1 − cosh(Ωx)

cosh(Ω/2)

]
(12)

ν(x) = kΩ
sinh(Ωx)

cosh(Ω/2)
(13)

T (x, y) = CT y + (1 − kCT )x + kCT

sinh(Ωx)

Ω cosh(Ω/2)
(14)

S(x, y) = CSy + k(CT − LeCS)x

− k(CT − LeCS)
sinh(Ωx)

Ω cosh(Ω/2)
(15)

with

Ω = √
RT [CT (1 − N) + N LeCS] and k = RT (16)
Ω2
The energy and mass balances across any horizontal section of
the enclosure yield the following expressions for the parameters
CT and CS :

CT = A1

1 + A0
and CS = (LeA0 − 1)

(Le2A0 + 1)
CT (17)

where

A0 = k2
(

3

2
− 3 tanh(Ω/2)

Ω
− tanh2(Ω/2)

2

)
and

A1 = k

(
1 − 2 tanh(Ω/2)

Ω

)
(18)

Then, the expressions of the Nusselt and Sherwood numbers
can be deduced as:

Nu = 1

1 − CT A1
and Sh = 1

(CT − LeCS)A1
(19)

4.2. Discussion of some limiting cases

Hereafter, two limiting cases, corresponding respectively
to small values (pseudo-conductive regime) and large values
(boundary layer regime) of Ω will be considered. These limits
lead to important simplifications of the parallel flow solution.

4.2.1. The pseudo conductive regime
Such a regime corresponds to very small values of Ω and can

be observed at sufficiently small values of RT . For this case, the
parallel flow solution is reduced to the following expressions:

ψ(x) = RT

2

(
−x2 + 1

4

)
(20)

ν(x) = RT x (21)

T (x, y) = CT y + x + RT CT

6

(
x3 − 3

4
x

)
(22)

S(x, y) = CSy − RT (CT − LeCS)

6

(
x3 − 3

4
x

)
(23)

The Nusselt and Sherwood numbers corresponding to the
pseudo-conductive regime are expressed as:

Nu = 12

12 − RT CT

and Sh = 12

RT (CT − LeCS)
(24)

with CT and CS given by:

CT = 10RT

120 + R2
T

and CS = (LeR2
T − 120)

(Le2R2
T + 120)

CT (25)

4.2.2. The boundary layer regime
The boundary layer regime can be observed when Ω � 1

(the parameter Ω being inversely proportional to the thickness δ

of the vertical boundary layer) and it corresponds to sufficiently
large values RT . In the boundary layer region, the simplified
expressions of ψ , ν, T and S can be given respectively under
the following forms:

ψ(x) = k
(
1 − eΩ(λx−1/2)

)
(26)

ν(x) = λkΩeΩ(λx−1/2) (27)
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T (x, y) = CT y + (1 − kCT )x + λkCT

eΩ(λx−1/2)

Ω
(28)

S(x, y) = CSy + k(CT − LeCS)x

− λk(CT − LeCS)
eΩ(λx−1/2)

Ω
(29)

where λ is worth 1/(−1) for the positive/(negative) values of x.
The expressions of the parameters CT and CS become:

CT = k
(
1 − 2

Ω

)
1 + G

(
1 − 3

Ω

) and

CS =
(

LeG
(
1 − 3

Ω

) − 1

Le2G
(
1 − 3

Ω

) + 1

)
CT (30)

with

G = k2 (31)

The Nusselt and Sherwood numbers expressions can be reduced
to:

Nu = 1

1 − kCT

(
1 − 2

Ω

) and

Sh = 1

k(CT − LeCS)
(
1 − 2

Ω

) (32)

To quantify the quantity G versus the governing parameters of
the problem, an appropriate equation is established by combin-
ing Eqs. (16), (30) and (31), which yields:

ξ1G
2 − ξ2ΩG − Ω2 = 0 (33)

with{
ξ1 = Le2(Ω − 3)

ξ2 = (Le2 + NLe + N)(Ω − 3) + (NLe + N − 1)
(34)

Eq. (33) admits two solutions (G+ and G−) given respectively
by the following expressions:

G+ = Ω

2

(ξ2 +
√

ξ2
2 + 4ξ1

ξ1

)
and

G− = Ω

2

(ξ2 −
√

ξ2
2 + 4ξ1

ξ1

)
(35)

It can be deduced from Eq. (31) that G is a positive parame-
ter. Thus, only G+ satisfies this condition since ξ1 is always
positive (Ω � 1).

Furthermore, at sufficiently large values of Ω , the simplified
approximate expression of the parameter G is given by:

G ∼= Le2 + NLe + N

Le2
Ω for N >

−Le2

1 + Le
(36)

and

G ∼= −1

Le2 + NLe + N
for N <

−Le2

1 + Le
(37)

Two boundary layer behaviors, corresponding to Eqs. (36) and
(37), are to be distinguished and their corresponding solutions
are termed as S1 and S2, respectively. Their domains of exis-
tence are determined here in terms of Le and N .
(a)

(b)

Fig. 3. Different domains in the N–Le plane corresponding to the different
boundary layer behaviors for SP = 1 (a) and SP = 1.5 (b).

From the obtained results, it can be deduced that the
boundary layer flows corresponding to aiding buoyancy forces
(N > 0) are characterized by the existence of a unique behavior
(represented by S1) for the particular value SP = 1. This result
is different from that reported by Er-Raki et al. [18] and [27]
who showed that, for SP �= 1, two boundary layer behaviors are
possible even for positive values of N . The difference between
both situations can be clearly seen by comparing Figs. 3(a)
and 3(b) corresponding, respectively, to SP = 1 and SP �= 1 and
illustrating the different domains corresponding to the bound-
ary layer behaviors denoted S1 and S2 in the N–Le plane.

Using Eqs. (36) and (37), the approximate expressions of Ω

corresponding to S1 and S2 at sufficiently large values of RT

can be given, respectively, as follows:

Ω ∼= R
2/5
T Le2/5(Le2 + NLe + N

)−1/5 (38)

Ω ∼= R
1/2
T

[−(
Le2 + NLe + N

)]1/4 (39)

From these equations, it can be easily deduced that the bound-
ary layer thickness δ (which is inversely proportional to Ω)
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increases with N . This behavior is different from that reported
in [18] for SP �= 1 where it is shown that the parameter δ can
increase or decrease with N depending on the sign of the lat-
ter. In addition, for SP �= 1, it was demonstrated [18] that the
horizontal profiles of both temperature and concentration ex-
hibit boundary layer behaviors (horizontal gradients nearly zero
in the central part of the cavity and important gradients in a
very thin layer adjacent to the vertical boundaries) for the so-
lution S1 but for the solution S2, no boundary layer behavior
was observed neither for the temperature nor for the concen-
tration. Eq. (28) is also valid for SP �= 1, which means that
the temperature profile keeps the same behavior independently
of the value attributed to the parameter SP . However the con-
centration fields exhibit different behaviors. In fact, it can be
demonstrated from Eq. (29) that the concentration profiles for
S1 and S2 present no boundary layer behavior for SP = 1 while
it was demonstrated in the past [18] that such a behavior is ob-
served in the case of S1 for SP �= 1.

5. Effects of thermal Rayleigh number and buoyancy ratio

In the following subsections, the effects of the thermal
Darcy–Rayleigh number and the buoyancy ratio are examined
for constant Soret parameter and Lewis number (SP = 1 and
Le = 10).

5.1. Effect of thermal Rayleigh number, RT

Variations with RT of Ω−1, Nu and Sh are respectively pre-
sented in Figs. 4(a)–4(c) for Le = 10, SP = 1 and N = −3
(for S1) and −10 (for S2). The analytical parallel flow solution
represented in these figures by solid lines is seen to be in ex-
cellent agreement with the numerical results depicted by dotted
ones. The evolution of Ω−1, presented in Fig. 4(a) is charac-
terized by a continuous decrease with RT for both solutions.
These tendencies are justified by the expressions of Eqs. (38)
and (39) which show that the thickness δ (δ being proportional
to Ω−1) of the boundary layer, corresponding to S1 and S2, de-
creases by increasing RT but with different slopes. In fact, from
these equations, the parameter δ is seen to vary as R

−2/5
T and

R
−1/2
T respectively for S1 and S2. In addition, Fig. 4(a) shows

that the parallel flow and boundary layer solutions are in good
agreement at sufficiently large values of RT , which justifies the
simplifications adopted in the boundary layer regime.

The evolutions of Nu and Sh with RT , presented respec-
tively in Figs. 4(b) and 4(c), show that these evolutions are
strongly dependent on the type of behavior. In fact, for S2, the
conductive regime remains dominant in the case of Nu while
the solution S1 precipitates the appearance of the convective
regime (from RT > 5). For this solution, the boundary layer
regime results are seen to be in good agreement with those ob-
tained numerically and with those of the parallel flow solution;
the agreement is observed from RT ≈ 10. The evolution of Sh,
presented in Fig. 4(c), is characterized by a sharp decrease at
low values of RT , towards an asymptotic limit in the case of S2
(Sh∞ ≈ 11.6) and towards a minimum (Shmin ≈ 13.04) in the
(a)

(b)

(c)

Fig. 4. Effect of RT on Ω−1 (a), Nu (b) and Sh (c) for A = 8, Le = 10, SP = 1,
N = −3 (S1) and N = −10 (S2).
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case of S1, reached at RT ≈ 6. Beyond the minimum, Sh cor-
responding to S1 increases linearly with RT . It is to note that,
both solutions S1 and S2 lead to the same results in the pseudo
conductive regime (regime observed at low values of RT ) and
the difference begins with the appearance of the convective mo-
tion. The validity of the analytical expressions deduced for the
pseudo-conductive and the boundary layer regimes is proved
in Figs. 4(b) and 4(c). In fact, a good agreement between the
results based on the parallel flow solution corresponding to
Eq. (19) and those of the pseudo conductive and boundary layer
regimes is observed at sufficiently small and large values of
RT , respectively. Finally, it is to outline that, in pure diffusive
regime, Nu and Sh are governed by Eq. (24) and their respective
values in this regime (obtained by tending RT towards 0) are 1
and infinity (equality of concentrations on the vertical walls of
the cavity).

5.2. Effect of the buoyancy ratio, N

The effect of solutal to thermal buoyancy ratio, N , on Ω−1,
Nu and Sh is illustrated in Figs. 5(a)–5(c) for RT = 100, SP = 1
and Le = 10 (with |N | = N in the case of S1 (N > 0) and
|N | = −N in the case of S2 (N < 0)). The effect of |N | on these
quantities is seen to depend strongly on the type of solution. In
the case of S1, Fig. 5(a) shows that the evolution of Ω−1 with
|N | is monotonous, characterized by a very slow increase in
the range of relatively small |N | and a very fast increase when
this parameter exceeds 500 leading to important values of the
boundary layer thickness. This means that the boundary layer
behavior is observed only for relatively low values of |N | in
the case of S1. The situation is different in the case of S2 since
the evolution of Ω−1 with |N | for this case is characterized by a
monotonous decrease. Hence, for S2, the boundary layer behav-
ior is observed for relatively large values of |N |. These results
are well confirmed in Figs. 5(b) and 5(c) where the agreement
between the parallel flow and boundary layer results is observed
at sufficiently small values of |N | (heat-transfer-driven flow)
and sufficiently large values of |N | (mass-transfer-driven flow),
respectively for S1 and S2. In the other hand, the variations of
Nu and Sh versus |N | are characterized, in the case of S1, by
an increase towards asymptotic limits (not yet reached in the
curve). It is of interest to note that, since Ω is small enough
at sufficiently large values of N , these limits coincide with
those of the expressions given by Eq. (24); they are about 5.66
and 920.11, respectively, for Nu and Sh. Physically, though the
value of Ω is small, the solution is not that of a pseudo con-
ductive regime since Nu is different from unity and the value
of RT is relatively important. For the solution S2, the corre-
sponding curves show that Sh increases by increasing |N | while
Nu decreases towards unity (i.e. the value of the pure diffusive
regime).

6. Conclusion

Soret effect on fluid flow and heat and mass transfers in-
duced by double-diffusive natural convection in a vertical
(a)

(b)

(c)

Fig. 5. Variations with |N | of Ω−1 (a), Nu (b) and Sh (c) for RT = 100, Le =
10, SP = 1 and A = 8.
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porous enclosure subject to horizontal gradients of tempera-
ture and concentration is studied analytically and numerically.
The study is conducted in the case where the external mass
flux is compensated by the Soret effect (SP = 1). It is found
that, dependently on the region considered in the Le–N plane,
two different behaviors are possible and the disappearance of
the boundary layer regime may occur at sufficiently large or
sufficiently small values of |N |. It is also found that the bound-
ary layer comportment is absent in the concentration profile for
both regions while in the case of temperature, the boundary
layer behavior is possible depending on the region considered
in the Le–N plane.
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